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Abstract 
Optical Character Recognition (OCR) is the 

electronic conversion of scanned images of 

hand written text into machine encoded text. 

In this project various image pre-processing, 

features extraction and classification 

algorithms have been explored and 

compared, to design high performance OCR 

software for Indian Language Hindi based on 

Devnagari script. The best performance 

obtained with handwritten individual letters is 

98.8% using One-against-All SVM 

technique and extracting features using 

HOG (Histogram of Gradient) process. 

 

1. Introduction 

1.1 Motivation 

OCR finds wide applications as a 

telecommunication aid for the deaf, postal 

address reading, direct processing of 

documents, foreign language recognition etc. 

This problem has been explored in depth for 

the Latin script. However there are not many 

reliable OCR software available for the 

Indian language Hindi (Devanagari), the third 

most spoken language in the world. [1] 

provides a good starting point for the 

problem and presents a good overview. The 

objective in this project is to design high 

performance OCR software for Devanagari 

script that can help in exploring future 

applications such as navigation, for ex. traffic 

sign recognition in foreign lands etc.  

 

1.2 Framework Description 

1.2.1 Hindi Language Fundamentals 

The Hindi Language consists of 12 vowels 

and 34 consonants. The presence of pre and 

post symbols added to demarcate between 

consonants and vowels introduces another 

level of complexity as compared to Latin 

script recognition. As a result, the complexity 

of deciphering letters out of text in 

Devanagari script increases dramatically 

because of presence of various derived letters 

(see Fig 1.) from the basic vowels and 

consonants. In this project emphasis has 

been laid on recognizing the individual base 

consonants and vowels which can be later 

extended to recognize complex derived 

letters. 

 

1.2.1 Dataset Generation 

Because of the limited scope of work being 

done in this realm, standard hand written 

dataset for Hindi is not readily available. 

Hence, the entire dataset has been generated 

by taking hand written samples for all letters 

from 20 different users.  

 

1.3 Approach 

The approach followed during the project 

was to formulate a large systematic standard 

dataset, extract important features from the 

scanned text images and to implement a high 

performing classification that ensures high 

performance even on standard off-the-shelf 

Machine Learning Algorithms. The following 

sections discuss about the methodology being 

implemented throughout the project to 

improve the performance of the system. 

 

2. Methodology 

2.1 Training Set Generation 

The handwritten data set was manually 

generated for each of the 46 fundamental 

characters. To standardize image 

preprocessing steps, a standard template was 

created consisting of 88 blocks (300 x 300 

pixels each) on a 8.5”x11” sized sheet, where 

each block contains exactly one character. 

Samples from 20 different users were 
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obtained to account for varied human 

calligraphy style and fonts sizes. However, 

while generating samples angular skewness 

was avoided. All characters were written with 

a standard black pen. These sheets were then 

scanned to generate the images. A complete 

dataset of ~150-200 samples /character for 

each of the 46 characters was acquired, 

resulting in a total dataset of almost 8000 

characters. 

 

2.2 Image Preprocessing 

The scanned image was first converted from 

RGB scale to gray-scale. It was then split-off 

into individual character blocks using a 

MATLAB script to obtain raw individual 

character samples. The following 

preprocessing and noise removal techniques 

were then employed on raw samples to 

obtain a clean dataset.  

2.2.1 Median Filtering. Scanning process 

introduces irregularities such as ‘speckle 

noise’ and ‘salt and pepper noise’ in the 

output image. Median Filtering was 

employed, to remove such effects, where 

each pixel is replaced by the median of the 

neighboring pixels. 

 

2.2.2 Background Removal. To model the 

background noise due to scanning, a white 

page was scanned with the same scanner and 

this image was subtracted from each of the 

character images, hence eliminating 

background and any residual background 

noise highlighting only the character sample. 

 

2.2.3 Thresholding. To remove any residual 

irregularities and to increase the contrast of 

the sample image, all pixel values above 200 

were scaled upto 255. Also, all pixels lying at 

the boundary of the image within a 50 pixel 

wide strip were scaled upto 255 to ensure a 

clean boundary. 

 

 

 

 

 

 

 

Fig 1. Image after PreProcessing. 

 

2.2.4 Sparsity Removal. It was observed that 

the image matrix was sparse and that the 

character size within the image was much 

smaller than the complete image. Hence, a 

MATLAB script was written to create a tight 

bounding box around the character and to 

extract the pixels into a 128px*128px matrix 

thus increasing the density of useful character 

information in image. 

 

After creating individual character images by 

the above process, any abnormalities in the 

data set were also removed manually. 

 

2.3 Feature Selection/Extraction 

The following feature extraction methods 

were employed and tested on a training set to 

determine the most optimal set of features 

for our specific handwriting recognition 

problem. 

 

2.3.1 Raw Pixel Data 

The most basic feature set for any image is its 

pixel intensities, and thus this was the first set 

of features that were employed. While these 

set of features are easy to design, they lead to 

a very high dimensional feature vector 

(16,384 dimensional for a 128px*128px 

image). Reducing the image size to extract 

reasonably sized feature vectors blurs the 

image and leads to loss of information. 

However, a large feature vector size results in 

massive learning time of high complexity 

classification algorithms such as SVM and 

also results in over-fitting (high-variance) 

issues.   

 

2.3.2 Histogram of Oriented Gradients 

(HOG) 

To overcome the problems associated with 

the features generated from raw pixels, 

Histogram of Oriented Gradients (HOG) 

features [2] were used. This feature set is 

independent of the image size and captures 
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localized information about intensity 

gradients.  The HOG window size and the 

number of bins in the histogram can be 

varied to analyze the performance of 

classification with respect to feature size. 

Thus, this provides a flexible set of 

representative features and helps to deal with 

both high bias and high variance issues. 

 

 

 

 

 

 

 

 

 

 

 

2.3.3 Sparse Autoencoder 

The third method being analyzed in the 

design process for feature extraction was 

Sparse Autoencoder, a multi layered neural 

network. As in [3], the basic Back-

propagation algorithm was used to determine 

the weight matrix. 

After the weight matrix (30 x 64) was 

obtained, each image was divided into 16 

matrices (patch size 8 x 8) and an estimate of 

the feature vector (length = 30) for each patch 

was calculated. For every image, the vector 

with maximum norm was chosen as the 

feature vector. 

 

 

 

 

 

 

 

 

 

 

 

 

2.3.4 Analysis of Feature Extraction 

Techniques 

 

Firstly, the above features were tested on a 

reduced Training Set (4 character labels) 

using Naïve Bayes as shown in Table 1. 

 

Observations 

 Since the Raw Pixel data was very high 

dimensional, the run times for these 

features were very poor, as compared to 

the dimensionally reduced features. As 

expected, the larger image matrix 

(128px*128px) performed better in terms 

of accuracy. Plotting the smaller image 

showed that a large amount of the 

information was lost as a result of blurring 

effects. 

 The performance of HOG features was 

found to be much better than the Sparse 

Autoencoder in terms of test error. This 

can be explained by the fact that the 

HOG features best captured the 

distribution of intensity gradients and 

edge directions. It was also observed that 

the Sparse Autoencoder had poor run-

times for both training the neural network 

and then extracting the features from 

individual images, making its realization 

difficult for large feature vector 

dimension. 

 Increasing the size of the HOG feature 

vector led to higher test errors primarily 

because of over-fitting of parameters 

resulting in a high test error. 

 The high test errors observed with raw 

pixel features as compared to HOG 

features shows that most of the character 

information is contained in the intensity 

gradient and not the absolute intensity 

values 

 

Owing to better accuracy and better run 

times, HOG features were used for 

subsequent analysis and Classifier 

Formulation. 

 

Feature Extraction Test Error 

Raw Pixel  

(Image Size 128px*128px) 
18.56% 

Design Parameters for the Sparse 

Autoencoder 

Activation Function: Hyperbolic Tangent 

# of inputs = 64      

#of Layers = 3          

# of Hidden Units = 30 

Weight Decay Parameter (lambda) = 0.002 

Learning Parameters: alpha = 0.003 beta = 5 

Sparsity Parameter: rho = -0.996 

Number of Iterations = 5 million 

 

Design Parameters for HOG features 

Number of HOG windows per bound 

box:   

Along Horizontal = 3;  

Along Vertical = 3 

Number of Bins in Histogram = 9 

Filter Kernel: 

Along Horizontal = [-1 0 1] 

Along Vertical = [1 0 -1]’ 
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Raw Pixel  

(Image Size 16px*16px) 
45% 

Sparse Autoencoder 14.30% 

HOG  

(Feature Vector Dim. = 81) 
5.40% 

HOG  

(Feature Vector Dim. = 108) 
7.80% 

Table1. Test Error for Different Features 

 

2.4 Classifier 

After selecting the feature extraction 

technique, while choosing the classifier 

algorithm for OCR the following three 

classifiers were analyzed and the highest 

performance classifier was being 

implemented. The results are enumerated in 

the next section. 

 

2.4.1 Naïve Bayes 

For a quick and dirty implementation, the 

Naive Bayes Algorithm was used. Since the 

pixel values and hence successive features are 

dependent on the character label, the Naïve 

Bayes Assumption (features being 

conditionally independent of output labels) 

may not hold. This explains the low accuracy 

that was obtained with this classifier as shown 

in Fig 2. 

 

2.4.2 Support Vector Machines 

To use SVM in the multi-class case, the 

‘SVM and Kernel Methods’ MATLAB 

toolbox was used. In particular, the ‘One 

against All’ approach was used. The errors 

for Gaussian and Polynomial Kernels were 

evaluated. The changes in error with change 

in the cost parameter ‘c’ were also observed. 

Specifically, decreasing ‘c’ from 1000 to 500 

and then to 50 and 5 led to an increase in the 

test error as well as an increase in the running 

time of the algorithm. Increasing ‘c’ from 

1000 to 10000 showed a similar increase in 

test error. 

 

Final parameters used: 

Cost Parameter = 1000 

lambda = 10^(-7) 

 

2.4.3 Adaboost  

To use Adaboost in the multiclass model, the 

‘Gentle Adaboost for Multiclass Classification’ 

MATLAB toolbox was used. In particular, 

we used the Decision Tree as the underlying 

base learner. Using the ‘Perceptron’ as the 

base learner led to very high run times of the 

algorithm and hence this weak learner was 

not used on the entire dataset. 

 

Final Parameters used: 

lambda = 0.02 

epsilon = 0.1 

 

3. Test Results 

For evaluating the final errors for each 

classifier, we used the LeaveMOut Cross 

Validation with M (size of test set) fixed at 

400. This was done for 10 iterations with the 

test set being randomly chosen in each 

iteration. The following curve shows the plot 

of test and training errors for SVM (Gaussian 

kernel) as a function of training set size. 

 

Fig 2. Test and Training Error over whole 

dataset 

 

3.1 Observations and Conclusions 

 The One against All SVM approach with 

Gaussian kernel (cost parameter = 1000) 
was found to have the highest test 
accuracy of 98.8%. This method also 

gave 100% accuracy for the training set 

(fig. 4). One possible explanation for this 

seems to be that the HOG features (with 

regularization) give linearly separable data 
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points that can be correctly separated by a 

maximum margin hyperplane. 

 The SVM Linear kernel gave about 1% 

more error than the Gaussian kernel 

probably because the dataset was linearly 

separable even in a finite feature 

dimensional space and hence using a 

Gaussian kernel did not yield significant 

improvements. 

 The Naïve Bayes classifier gives high 

errors probably because the Naïve Bayes 

assumption of xi

j

 being conditionally 

independent of yi does not hold here.  

Fig 3. Test Error Vs Training Data Size 

 

Fig 4. Training Error Vs Training Data 

Size 
 

 As seen in Fig 3. SVM shows higher test 

error for smaller training data but 

asymptotically gives better results than 

either Naive Bayes or AdaBoost. 

 The test error for Adaboost (fig. 3) was 

seen to be surprisingly high for an 

iterative algorithm trying to minimize 

error in every iteration. This can be 

attributed to the use of a binary weak 

learner such as Decision Trees, which 

seem to break down with the increase in 

the number of classes. 

 Some of the reasons of getting high value 

of accuracies with SVM could be: 

i. Linearly separable data set - As 

shown in [5], SVM achieves zero 

training error for linearly separable 

dataset and very high accuracies for 

the test set. This basically implies that 

the intra-class features were kind of 

similar while there was significant 

difference between inter-class feature 

vectors. 

ii. Clean data set – It was ensured that 

the dataset contained no rotated / 

distorted images. 

iii. Simplistic character set – The project 

recognizes basic consonants and 

vowels instead of complete words. 

 The confusion matrix showed that some 

particular combinations of characters 

were being confused consistently by all 

the three classifiers. These were also 

verified to be visually similar to the 

human eye. 
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