
Fall’10 CS229 Machine Learning 1

Optical Character Recognition for Handwritten Hindi
Aditi Goyal, Kartikay Khandelwal, Piyush Keshri

Stanford University

Abstract
Optical Character Recognition (OCR) is the

electronic conversion of scanned images of

hand written text into machine encoded text.

In this project various image pre-processing,

features extraction and classification

algorithms have been explored and

compared, to design high performance OCR

software for Indian Language Hindi based on

Devnagari script. The best performance

obtained with handwritten individual letters is

98.8% using One-against-All SVM

technique and extracting features using

HOG (Histogram of Gradient) process.

1. Introduction

1.1 Motivation

OCR finds wide applications as a

telecommunication aid for the deaf, postal

address reading, direct processing of

documents, foreign language recognition etc.

This problem has been explored in depth for

the Latin script. However there are not many

reliable OCR software available for the

Indian language Hindi (Devanagari), the third

most spoken language in the world. [1]

provides a good starting point for the

problem and presents a good overview. The

objective in this project is to design high

performance OCR software for Devanagari

script that can help in exploring future

applications such as navigation, for ex. traffic

sign recognition in foreign lands etc.

1.2 Framework Description

1.2.1 Hindi Language Fundamentals

The Hindi Language consists of 12 vowels

and 34 consonants. The presence of pre and

post symbols added to demarcate between

consonants and vowels introduces another

level of complexity as compared to Latin

script recognition. As a result, the complexity

of deciphering letters out of text in

Devanagari script increases dramatically

because of presence of various derived letters

(see Fig 1.) from the basic vowels and

consonants. In this project emphasis has

been laid on recognizing the individual base

consonants and vowels which can be later

extended to recognize complex derived

letters.

1.2.1 Dataset Generation

Because of the limited scope of work being

done in this realm, standard hand written

dataset for Hindi is not readily available.

Hence, the entire dataset has been generated

by taking hand written samples for all letters

from 20 different users.

1.3 Approach

The approach followed during the project

was to formulate a large systematic standard

dataset, extract important features from the

scanned text images and to implement a high

performing classification that ensures high

performance even on standard off-the-shelf

Machine Learning Algorithms. The following

sections discuss about the methodology being

implemented throughout the project to

improve the performance of the system.

2. Methodology

2.1 Training Set Generation

The handwritten data set was manually

generated for each of the 46 fundamental

characters. To standardize image

preprocessing steps, a standard template was

created consisting of 88 blocks (300 x 300

pixels each) on a 8.5”x11” sized sheet, where

each block contains exactly one character.

Samples from 20 different users were

Fall’10 CS229 Machine Learning 2

obtained to account for varied human

calligraphy style and fonts sizes. However,

while generating samples angular skewness

was avoided. All characters were written with

a standard black pen. These sheets were then

scanned to generate the images. A complete

dataset of ~150-200 samples /character for

each of the 46 characters was acquired,

resulting in a total dataset of almost 8000

characters.

2.2 Image Preprocessing

The scanned image was first converted from

RGB scale to gray-scale. It was then split-off

into individual character blocks using a

MATLAB script to obtain raw individual

character samples. The following

preprocessing and noise removal techniques

were then employed on raw samples to

obtain a clean dataset.

2.2.1 Median Filtering. Scanning process

introduces irregularities such as ‘speckle

noise’ and ‘salt and pepper noise’ in the

output image. Median Filtering was

employed, to remove such effects, where

each pixel is replaced by the median of the

neighboring pixels.

2.2.2 Background Removal. To model the

background noise due to scanning, a white

page was scanned with the same scanner and

this image was subtracted from each of the

character images, hence eliminating

background and any residual background

noise highlighting only the character sample.

2.2.3 Thresholding. To remove any residual

irregularities and to increase the contrast of

the sample image, all pixel values above 200

were scaled upto 255. Also, all pixels lying at

the boundary of the image within a 50 pixel

wide strip were scaled upto 255 to ensure a

clean boundary.

Fig 1. Image after PreProcessing.

2.2.4 Sparsity Removal. It was observed that

the image matrix was sparse and that the

character size within the image was much

smaller than the complete image. Hence, a

MATLAB script was written to create a tight

bounding box around the character and to

extract the pixels into a 128px*128px matrix

thus increasing the density of useful character

information in image.

After creating individual character images by

the above process, any abnormalities in the

data set were also removed manually.

2.3 Feature Selection/Extraction

The following feature extraction methods

were employed and tested on a training set to

determine the most optimal set of features

for our specific handwriting recognition

problem.

2.3.1 Raw Pixel Data

The most basic feature set for any image is its

pixel intensities, and thus this was the first set

of features that were employed. While these

set of features are easy to design, they lead to

a very high dimensional feature vector

(16,384 dimensional for a 128px*128px

image). Reducing the image size to extract

reasonably sized feature vectors blurs the

image and leads to loss of information.

However, a large feature vector size results in

massive learning time of high complexity

classification algorithms such as SVM and

also results in over-fitting (high-variance)

issues.

2.3.2 Histogram of Oriented Gradients

(HOG)

To overcome the problems associated with

the features generated from raw pixels,

Histogram of Oriented Gradients (HOG)

features [2] were used. This feature set is

independent of the image size and captures

Fall’10 CS229 Machine Learning 3

localized information about intensity

gradients. The HOG window size and the

number of bins in the histogram can be

varied to analyze the performance of

classification with respect to feature size.

Thus, this provides a flexible set of

representative features and helps to deal with

both high bias and high variance issues.

2.3.3 Sparse Autoencoder

The third method being analyzed in the

design process for feature extraction was

Sparse Autoencoder, a multi layered neural

network. As in [3], the basic Back-

propagation algorithm was used to determine

the weight matrix.

After the weight matrix (30 x 64) was

obtained, each image was divided into 16

matrices (patch size 8 x 8) and an estimate of

the feature vector (length = 30) for each patch

was calculated. For every image, the vector

with maximum norm was chosen as the

feature vector.

2.3.4 Analysis of Feature Extraction

Techniques

Firstly, the above features were tested on a

reduced Training Set (4 character labels)

using Naïve Bayes as shown in Table 1.

Observations

 Since the Raw Pixel data was very high

dimensional, the run times for these

features were very poor, as compared to

the dimensionally reduced features. As

expected, the larger image matrix

(128px*128px) performed better in terms

of accuracy. Plotting the smaller image

showed that a large amount of the

information was lost as a result of blurring

effects.

 The performance of HOG features was

found to be much better than the Sparse

Autoencoder in terms of test error. This

can be explained by the fact that the

HOG features best captured the

distribution of intensity gradients and

edge directions. It was also observed that

the Sparse Autoencoder had poor run-

times for both training the neural network

and then extracting the features from

individual images, making its realization

difficult for large feature vector

dimension.

 Increasing the size of the HOG feature

vector led to higher test errors primarily

because of over-fitting of parameters

resulting in a high test error.

 The high test errors observed with raw

pixel features as compared to HOG

features shows that most of the character

information is contained in the intensity

gradient and not the absolute intensity

values

Owing to better accuracy and better run

times, HOG features were used for

subsequent analysis and Classifier

Formulation.

Feature Extraction Test Error

Raw Pixel

(Image Size 128px*128px)
18.56%

Design Parameters for the Sparse

Autoencoder

Activation Function: Hyperbolic Tangent

of inputs = 64

#of Layers = 3

of Hidden Units = 30

Weight Decay Parameter (lambda) = 0.002

Learning Parameters: alpha = 0.003 beta = 5

Sparsity Parameter: rho = -0.996

Number of Iterations = 5 million

Design Parameters for HOG features

Number of HOG windows per bound

box:

Along Horizontal = 3;

Along Vertical = 3

Number of Bins in Histogram = 9

Filter Kernel:

Along Horizontal = [-1 0 1]

Along Vertical = [1 0 -1]’

Fall’10 CS229 Machine Learning 4

Raw Pixel

(Image Size 16px*16px)
45%

Sparse Autoencoder 14.30%

HOG

(Feature Vector Dim. = 81)
5.40%

HOG

(Feature Vector Dim. = 108)
7.80%

Table1. Test Error for Different Features

2.4 Classifier

After selecting the feature extraction

technique, while choosing the classifier

algorithm for OCR the following three

classifiers were analyzed and the highest

performance classifier was being

implemented. The results are enumerated in

the next section.

2.4.1 Naïve Bayes

For a quick and dirty implementation, the

Naive Bayes Algorithm was used. Since the

pixel values and hence successive features are

dependent on the character label, the Naïve

Bayes Assumption (features being

conditionally independent of output labels)

may not hold. This explains the low accuracy

that was obtained with this classifier as shown

in Fig 2.

2.4.2 Support Vector Machines

To use SVM in the multi-class case, the

‘SVM and Kernel Methods’ MATLAB

toolbox was used. In particular, the ‘One

against All’ approach was used. The errors

for Gaussian and Polynomial Kernels were

evaluated. The changes in error with change

in the cost parameter ‘c’ were also observed.

Specifically, decreasing ‘c’ from 1000 to 500

and then to 50 and 5 led to an increase in the

test error as well as an increase in the running

time of the algorithm. Increasing ‘c’ from

1000 to 10000 showed a similar increase in

test error.

Final parameters used:

Cost Parameter = 1000

lambda = 10^(-7)

2.4.3 Adaboost

To use Adaboost in the multiclass model, the

‘Gentle Adaboost for Multiclass Classification’

MATLAB toolbox was used. In particular,

we used the Decision Tree as the underlying

base learner. Using the ‘Perceptron’ as the

base learner led to very high run times of the

algorithm and hence this weak learner was

not used on the entire dataset.

Final Parameters used:

lambda = 0.02

epsilon = 0.1

3. Test Results

For evaluating the final errors for each

classifier, we used the LeaveMOut Cross

Validation with M (size of test set) fixed at

400. This was done for 10 iterations with the

test set being randomly chosen in each

iteration. The following curve shows the plot

of test and training errors for SVM (Gaussian

kernel) as a function of training set size.

Fig 2. Test and Training Error over whole

dataset

3.1 Observations and Conclusions

 The One against All SVM approach with

Gaussian kernel (cost parameter = 1000)
was found to have the highest test
accuracy of 98.8%. This method also

gave 100% accuracy for the training set

(fig. 4). One possible explanation for this

seems to be that the HOG features (with

regularization) give linearly separable data

85

90

95

100

Naïve
Bayes

Ada
Boost

SVM
Linear

SVM
gaussian

Train Accuracy % Test Accuracy %

Fall’10 CS229 Machine Learning 5

points that can be correctly separated by a

maximum margin hyperplane.

 The SVM Linear kernel gave about 1%

more error than the Gaussian kernel

probably because the dataset was linearly

separable even in a finite feature

dimensional space and hence using a

Gaussian kernel did not yield significant

improvements.

 The Naïve Bayes classifier gives high

errors probably because the Naïve Bayes

assumption of xi

j

 being conditionally

independent of yi does not hold here.

Fig 3. Test Error Vs Training Data Size

Fig 4. Training Error Vs Training Data

Size

 As seen in Fig 3. SVM shows higher test

error for smaller training data but

asymptotically gives better results than

either Naive Bayes or AdaBoost.

 The test error for Adaboost (fig. 3) was

seen to be surprisingly high for an

iterative algorithm trying to minimize

error in every iteration. This can be

attributed to the use of a binary weak

learner such as Decision Trees, which

seem to break down with the increase in

the number of classes.

 Some of the reasons of getting high value

of accuracies with SVM could be:

i. Linearly separable data set - As

shown in [5], SVM achieves zero

training error for linearly separable

dataset and very high accuracies for

the test set. This basically implies that

the intra-class features were kind of

similar while there was significant

difference between inter-class feature

vectors.

ii. Clean data set – It was ensured that

the dataset contained no rotated /

distorted images.

iii. Simplistic character set – The project

recognizes basic consonants and

vowels instead of complete words.

 The confusion matrix showed that some

particular combinations of characters

were being confused consistently by all

the three classifiers. These were also

verified to be visually similar to the

human eye.

5. Acknowledgements

We thank Prof. Andrew Ng, Andrew Maas

and Quoc Le for their guidance and support

throughout the project. We would also like

to thank all those who contributed towards

the generation of our data set.

6. References

Fall’10 CS229 Machine Learning 6

[1] C.V. Jawahar, R. Kiran, “A Bilingual

OCR for Hindi-Telugu Documents and its

Applications,” ICDAR, Aug.’03,Vol.2.

[2] N. Dalal, B. Triggs, “Histogram of

oriented gradients for human detection,”

Conference on Computer Vision and Pattern

Recognition, 2005, Vol. 1, pp. 886-893.

[3]] A. Ng, “CS294 Notes - Sparse

Autoencoder,” Winter’09, Stanford

University.

[4] M.S. Jelodar, M.J. Fadaeieslam, N.

Mozayani, M. Fazeli, “A Persian OCR

System using Morphological Operators,”

World Academy of Science, Engineering and

Technology, 2005, pp. 241-244

[5] A. Ng, “CS229 Notes - Support Vector

Machines,” Fall’10, Stanford University.

[6] R. Ramanathan, S. Ponmathavan, N.

Valliappan, L. Thaneshwaran, A.S. Nair,

“Optical Character Recognition for English

and Tamil using Support Vector Machines,”

ACT, Dec.’09, pp. 610-612.

